数列的前项和记为,且满足.(1)求数列的通项公式;(2)求和;(3)设有项的数列是连续的正整数数列,并且满足:.问数列最多有几项?并求这些项的和.
本题满分14分)设命题p:函数是R上的减函数,命题q:函数在的值域为,若“p且q”为假命题,“p或q”为真命题,求的取值范围.
已知集合A=,分别根据下列条件,求实数的取值范围(1) (2)
已知.(1)求函数的图像在处的切线方程;(2)设实数,求函数在上的最大值.(3)证明对一切,都有成立.
已知数列{an}满足Sn+an=2n+1, (1) 写出a1, a2, a3,并推测an的表达式;(2) 用数学归纳法证明所得的结论。
设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.