已知圆.(1)直线:与圆相交于、两点,求;(2)如图,设、是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线、与轴分别交于和,问是否为定值?若是求出该定值;若不是,请说明理由.
已知命题P:方程表示双曲线,命题q:点(,)在圆的内部. 若为假命题,也为假命题,求实数的取值范围
(本小题满分12分)已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n≥2),a1=.(1)求证:{}是等差数列;(2)求an表达式;(3)若bn=2(1-n)an(n≥2),求证:b22+b32+…+bn2<1.
(本小题满分12)某电视机厂计划在下一个生产周期内生产两种型号电视机,每台A型或B型电视机所得利润分别为6和4个单位,而生产一台A型或B型电视机所耗原料分别为2和3个单位;所需工时分别为4和2个单位,如果允许使用的原料为100单位,工时为120单位,且A或B型电视和产量分别不低于5台和10台,应当生产每种类型电视机多少台,才能使利润最大?
本题满分12分)已知:等差数列{}中,=14,前10项和.(Ⅰ)求;(Ⅱ)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.
(本小题满分12)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(Ⅰ)确定角C的大小: (Ⅱ)若c=,且△ABC的面积为,求a+b的值。