某化工企业2012年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备年的年平均污水处理费用为(万元)。(1)用表示;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备。
直线在轴与轴上的截距相等,且到点的距离恰好为4,求直线的方程.
等腰三角形ABC的顶点,求另一端点C的轨迹方程.
设函数,其图象在点,处的切线的斜率分别为 (I)求证:; (II)若函数的递增区间为,求||的取值范围; (III)若当时(是与无关的常数),恒有,试求的最小值。
已知函数取得极小值. (Ⅰ)求a,b的值; (Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件: (1)直线l与曲线S相切且至少有两个切点; (2)对任意x∈R都有. 则称直线l为曲线S的“上夹线”. 试证明:直线是曲线的“上夹线”.
已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底, ) (1) 求的解析式; (2) 设,求证:当,时,; (3)是否存在负数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。