(本题14分)过点向直线作垂线,垂足为.求直线的方程.
(本大题满分12分)在中,角为锐角,已知内角、、所对的边分别为、、,向量且向量共线. (1)求角的大小; (2)如果,且,求的值.
已知函数,其中. (1)当a=3,b=-1时,求函数的最小值; (2)当a>0,且a为常数时,若函数对任意的,总有成立,试用a表示出b的取值范围.
已知抛物线,准线与轴的交点为. (Ⅰ)求抛物线的方程; (Ⅱ)如图,,过点的直线与抛物线交于不同的两点,AQ与BQ分别与抛物线交于点 C,D,设AB,DC的斜率分别为,的斜率分别为,问:是否存在常数,使得, 若存在,求出的值,若不存在,说明理由.
【原创】设数列的前项和为,且满足. 证明:数列是等差数列; 若等差数列的公差,且成等比数列,求数列的前项和.
(本大题满分12分)某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
(1)求、、的值; (2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率