已知,、是过点的射线,射线、分别平分 和. (1)如图①,若、是的三等分线,则 ° (2)如图②,若,,则 ° (3)如图③,在内,若(),则 ° (4)将(3)中的绕着点逆时针旋转到的外部(,),求此时的度数.
下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:
(1)若这20名学生的平均分是84分,求x和y的值; (2)这20名学生的本次测验成绩的众数和中位数分别是多少?
已知关于x的方程4x2﹣(k+2)x+k﹣1=0有两个相等的实根,(1)求k的值;(2)求此时方程的根.
解方程: (1)x2+4x+2=0 (2)x2﹣6x+9=(5﹣2x)2.
已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(-6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,。经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,连接DE,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,连接AD,点F是抛物线上A、C之间的一点,直线BF交AD于点P,连接PE, 试探索BP+PE是否存在最小值?若存在,求出这个最小值,并直接写出此时点F的坐标;若不存在,请说明理由.
问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系. 【发现证明】 小聪把△ABE绕点A逆时针旋转90°至△ADG,根据SAS,易证△AFG≌△AFE,从而发现EF=BE+FD,请你利用图(1)证明上述结论. 【类比引申】 如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD. 【探究应用】 如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(-1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)