(本小题满分14分)如图,已知矩形中,,,将矩形沿对角线把△折起,使移到点,且在平面上的射影恰好在上.(1)求证:;(2)求证:平面平面;(3)求三棱锥的体积.
设函数。(1)如果,求函数的单调递减区间;(2)若函数在区间上单调递增,求实数的取值范围;(3)证明:当时,
已知函数满足,对任意都有,且.(1)求函数的解析式;(2)是否存在实数,使函数在上为减函数?若存在,求出实数的取值范围;若不存在,说明理由.
某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元).当年产量不小于千件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
已知中,内角的对边的边长为,且(1)求角的大小;(2)若,,求出的面积
已知函数(1)若求的值;(2)求函数最小正周期及单调递减区间.