(本小题满分12分) 已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.(I)求椭圆的方程;(II)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
(本小题满分12分)已知函数的导数满足,,其中常数,求曲线在点处的切线方程.
(本小题满分12分)已知二项式的展开式中,前三项系数的绝对值成等差数列.(I)求展开式的第四项;(II)求展开式的常数项.
(本小题满分12分)已知函数f(x)=,x∈[0,2].(1)求f(x)的值域;(2)设a≠0,函数g(x)=ax3-a2x,x∈[0,2].若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0.求实数a的取值范围.
(本小题满分12分)设函数f(x)=(x>0且x≠1).(1)求函数f(x)的单调区间;(2)已知2>xa对任意x∈(0,1)成立,求实数a的取值范围.
(本小题满分12分)已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.