已知下列两个命题:函数上单调递增;关于的不等式的解集为R,为假命题,为真命题,求的取值范围。
(本小题满分14分) 设函数。 (I)求函数单调区间; (II)若恒成立,求a的取值范围; (III)对任意n的个正整数 (1)求证:(2)求证:
(本小题满分13分) 在数列 (I)若是公比为β的等比数列,求α和β的值。 (II)若,基于事实:如果d是a和b的公约数,那么d一定是a-b的约数。研讨是否存在正整数k和n,使得有大于1的公约数,如果存在求出k和n,如果不存在请说明理由。
(本小题满分12分) 已知点是椭圆上任意一点,直线的方程为 (I)判断直线与椭圆E交点的个数; (II)直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒 过一定点G,求点G的坐标。
如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形, (I)证明:C,D,F,E四点共面; (II)设AB=BC=BE,求二面角A—ED—B的大小。
(本小题满分12分) 已知的三内角A,B,C所对三边分别为a,b,c,且 (I)求的值。 (II)若的面积求a的值。