(本小题满分12分)已知函数,.(1)求的最大值;(2)设△中,角、的对边分别为、,若且,求角的大小.
某生物学习小组对、两种珍惜植物种子的发芽率进行实验性实验,每实验一次均种下一粒种子和一粒种子.已知、两种种子在一定条件下每粒发芽的概率分别为.假设任何两粒种子是否发芽相互之间没有影响.(Ⅰ)求3粒种子,至少有1粒未发芽的概率;(Ⅱ)求、各3粒种子,至少2粒发芽且全发芽的概率.
求函数的单调递增区间.
(10分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(Ⅰ)求方程有实根的概率;(Ⅱ)求的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
(10分)某运动员射击一次所得环数的分布如下:
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.(I)求该运动员两次都命中7环的概率(II)求的分布列(III)求的数学期望
(8分) 出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是(I)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(II)求这位司机在途中遇到红灯数ξ的期望和方差。