(10分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(Ⅰ)求方程有实根的概率;(Ⅱ)求的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
.(本小题满分12分)在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做这两题的可能性均为. (Ⅰ)求其中甲、乙二名学生选做同一道题的概率; (Ⅱ)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望.
.(本小题满分12分) 已知函数. (Ⅰ)求的最小正周期; (Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
(1)求数列的通项公式; (2)若数列满足:,求数列的前项和.
的周长为,且. (1)求边的长; (2)若的面积为,求角的度数.
建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2的造价分别为200元和150元,如何设计水池的长和宽能使得水池的造价最低?最低造价是多少?