某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中 120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1) 问各班被抽取的学生人数各为多少人?(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
(本小题满分10分)选修4—1:几何证明选讲 如图,已知与圆相切于点,半径,交于点, (Ⅰ)求证:; (Ⅱ)若圆的半径为3,,求的长度.
(本小题满分12分) 已知函数. (1)当时,求在最小值; (2)若存在单调递减区间,求的取值范围; (3)求证:().
(本小题满分12分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点. (1)若,求外接圆的方程; (2)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点. (Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值.
已知函数. (1)当时,求函数的单调区间和极值; (2)若函数在[1,4]上是减函数,求实数的取值范围.