已知数列是等差数列,为其前项和,,且,成等比数列;(1)求数列的通项公式;(2)设,为数列的前项和,若对一切正整数恒成立,求实数的范围.
(本小题满分15分)已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求正整数m的值.
(本小题满分16分)设为实数,函数.(1)若,求的取值范围;(2)求的最小值;(3)设函数,求不等式的解集.
(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.
设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α、β均大于1的什么条件?