(本小题满分12分)设关于的方程(Ⅰ)若方程有实数解,求实数的取值范围;(Ⅱ)当方程有实数解时,讨论方程实根的个数,并求出方程的解.
(本小题满分12分)A是锐角。(I)求的值;(II)若的面积。
(本小题满分12分)已知△ABC三个内角A、B、C的对边分别为a、b、c,向量。(1)求A;(2)已知,求bc的最大值。
(本小题满分12分)将一张2×6米的硬钢板按图纸的要求进行操作:沿线裁去阴影部分,把剩余的部分按要求焊接成一个有盖的长方体水箱(⑦为底,①②③④为侧面,⑤+⑥为水箱盖,其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为x米,容积为y立方米。(1)写出y关于x的函数关系式;(2)如何设计x的大小,使得水箱的容积最大?
(本小题满分12分)设函数若它是R上的单调函数,且1是它的零点。 (1)求实数a的值;
(2)设的图象的切线与x轴交于点的图象的切线与x轴于……,依此下去,过作函数的图象的切线与x轴交于点……,若求证:成等比数列;并求数列的通项公式。(已知)
(本小题满分14分)已知函数有下列性质:“若,使得”成立。(1)利用这个性质证明唯一;(2)设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由。