(本题满分12分)已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD.
设关于x的方程2x2-ax-2=0的两根为α、β(α<β),函数f(x)=. (1)求f(α)·f(β)的值; (2)证明f(x)是[α,β]上的增函数; (3)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小?
设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点. (1)试确定常数a和b的值;(2)试判断x=1,x=2是函数f(x)的极大值还是极小值,并说明理由.
在甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1. (1)试求常数a、b、c的值;(2)试判断x=±1是函数的极小值还是极大值,并说明理由.
已知曲线C1:y=x2与C2:y=-(x-2)2,直线l与C1、C2都相切,求直线l的方程.