(本小题满分12分)已知椭圆的焦点坐标为,,且短轴一顶点B满足,(Ⅰ) 求椭圆的方程;(Ⅱ)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由。
(本小题满分l4分)如图,边长为的正方体中,是的中点,在线段上,且. (1)求异面直线与所成角的余弦值; (2)证明:面; (3)求点到面的距离.
(本小题满分l2分)设命题:函数()的值域是;命题:指数函数在上是减函数.若命题“或”是假命题,求实数的范围.
(本小题满分l2分)已知,. (1)求函数的最小正周期; (2)求函数的最大值及相应的值.
(本小题8分)已知函数,,其中. (1)设函数.若在(0,3)上有零点,求的取值范围; (2)设函数是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得?若存在,求的值;若不存在,请说明理由.
(本小题8分) 设函数(常数 (1)求的定义域; (2)在函数的图像上是否存在不同的两点,使得过这两点的直线平行于x轴? (3)当满足什么条件时,在上恒取正值。