数列中,, (1)求证:时,是等比数列,并求通项公式。(2)设,, 求:数列的前n项的和。(3)设 、 、 。记 ,数列的前n项和。证明: 。
设函数 (Ⅰ)若函数在处取得极小值是,求的值; (Ⅱ)求函数的单调递增区间; (Ⅲ)若函数在上有且只有一个极值点, 求实数的取值范围.
在空间五面体ABCDE中,四边形ABCD是正方形,,. 点是的中点. 求证: (I) (II)
(本小题15分) 已知函数. (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)若函数在其定义域内为增函数,求正实数的取值范围; (Ⅲ)设函数,若在上至少存在一点,使得>成立,求实数的取值范围。
(本小题10分)已知函数 ⑴求证:函数f(x)在上为增函数;⑵证明:方程没有负根.
.若,则,,的大小关系是()