(14分)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程。
.设集合是满足下列两个条件的无穷数列的集合:① ② 是与无关的常数.(Ⅰ)若是等差数列,是其前n项的和,,证明:;(Ⅱ)设数列的通项为,求的取值范围;(Ⅲ)设数列的各项均为正整数,且,试证.
已知函数的定义域为R,其导数满足0<<1.设a是方程=x的根.(Ⅰ)当x>a时,求证:<x;(Ⅱ)求证:|-|<|x1-x2|(x1,x2∈R,x1≠x2);(Ⅲ)试举一个定义域为R的函数,满足0<<1,且不为常数.
设,分别是椭圆的左、右焦点,与直线相切的交椭圆于点,恰好是直线与的切点.(1)求该椭圆的离心率;(2)若点到椭圆的右准线的距离为,过椭圆的上顶点A的直线与交于B、C两点,且,求λ的取值范围.
(附加题)在锐角三角形ABC中,a,b,c分别为角A,B,C所对的边,且B=3A,求的取值范围.
12分)已知向量a=,b=,且a,b满足关系|ka+b|=|a-kb|(k>0).探究:a能否和b垂直?a能否和b平行?若不能,说明理由;若能,求出相应的k值..