(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1(Ⅰ)求证:DC∥平面ABE;(Ⅱ)求证:AF⊥平面BCDE;(Ⅲ)求证:平面AFD⊥平面AFE.
椭圆+=1上一点P到两焦点距离之积为m,则m最大时求P点坐标.
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上点的最远距离为,求这个椭圆方程,并求椭圆上到点P的距离为的点的坐标.
在面积为1的△PMN中,tan∠PMN=,tan∠MNP=-2,适当建立坐标系,求以M、N为焦点,且过点P的椭圆方程.
求过点P(3,0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程.
椭圆上一点P(2,1)到两焦点F1、F2的距离之和是焦距的两倍,求椭圆的标准方程.