设等差数列的公差为,且.若设是从开始的前项数列的和,即,,如此下去,其中数列是从第开始到第)项为止的数列的和,即.(1)若数列,试找出一组满足条件的,使得: ;(2) 试证明对于数列,一定可通过适当的划分,使所得的数列中的各数都为平方数;(3)若等差数列中.试探索该数列中是否存在无穷整数数列,使得为等比数列,如存在,就求出数列;如不存在,则说明理由.
如图,在直三棱柱中,, (1)设分别为的中点 求证: (2)求证:
已知向量,,设函数 (1)求函数的最小正周期。 (2)求函数在时的最大值与最小值。
过点作直线,使它被两已知直线和所截得的线段恰好被平分,求此直线方程。
已知,函数,(其中为自然对数的底数). (1)判断函数在上的单调性; (2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由. (3)若实数满足,求证:
已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。