设各项均为正数的数列的前n项和为,对于任意正整数n,都有等式:成立,求的通项an.
如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点.(1)证明:B F//平面E CD1(2)求二面角D1—EC—D的余弦值.
定义在上奇函数与偶函数,对任意满足+a为实数(1)求奇函数和偶函数的表达式(2)若a>2, 求函数在区间上的最值
(1) 已知直线(a+2)x+(1-a)y-3="0" 和直线(a-1)x +(2a+3)y+2="0" 互相垂直.求a值(2) 求经过点并且在两个坐标轴上的截距的绝对值相等的直线方程
已知函数.(1)列表并画出函数在长度为一个周期的闭区间上的简图;(2)将函数的图象作怎样的变换可得到的图象?
已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,|PF2|= , PF1⊥F1F2. (1)求椭圆C的方程;(6分)(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.