计算:6tan230°-sin60°-2sin45°
(12分)已知二次函数中,函数与自变量的部分对应值如下表:
(1)求该二次函数的关系式;(2)当为何值时,有最小值,最小值是多少?(3)若,两点都在该函数的图象上,试比较与的大小.
(6分) 已知一次函数y=ax+b的图像与反比例函数 的图像交于 A(2,2),B(-1,m),求一次函数的解析式.
(本小题满分15分)如图1,抛物线经过点A和点B.已知点A的坐标是(2,4),点B的横坐标是-2.(1)求的值及点B的坐标; (2)设点D为线段AB上的一个动点,过D作x轴的垂线,垂足为点H.在DH的右侧作等边△DHG. 将过抛物线顶点M的直线记为,设与x轴交于点N.① 如图1,当动点D的坐标为(1,2)时,若直线过△DHG的顶点G.求此时点N的横坐标是多少?② 若直线与△DHG的边DG相交,试求点N横坐标的取值范围.
(本小题满分11分)已知:如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN于点E.(1)求证:DE是⊙O的切线;(2)若∠ADE=30°,⊙O的半径为2,求图中阴影部分的面积.(结果保留根号)
(本小题满分9分)在一个不透明的箱子中装有三个大小相同、材质相同的小球,分别标有数字1,2,3.现从中随机地摸出一个小球,把该球上所标注的数字记为x后,放回原箱子;再从箱子中又随机地摸出一个小球,把该球上所标注的数字记为y.以先后记下的两个数字(x,y)作为点M的坐标.(1)求点M的横坐标与纵坐标的和为4的概率;(2)在平面直角坐标系中,试求点M落在以坐标原点为圆心,以为半径的圆的内部的概率.