如图所示,CE平分∠ACD,F为CA延长线上一点,FG∥CE交AB于点G,∠ACD=100°,∠AGF=20°,你能求出∠B的度数吗?若能求,请写出求解过程;若不能求,请说明理由.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形; (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF. (1) 证明:∠BAC=∠DAC,∠AFD=∠CFE; (2) 若AB∥CD,试证明四边形ABCD是菱形; (3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F. (1)说明 EO=FO. (2)当点O运动到何处,四边形AECF是矩形?说明你的结论. (3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?
如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF. (1)线段BD与CD有何数量关系,为什么? (2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.