(本小题满分14分) 如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF∥平面ABC; (2)平面平面
如图,长方体中,为中点.(1)求证:;(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;(3)若二面角的大小为,求的长.
已知数列、中,,且当时,,.记的阶乘.(1)求数列的通项公式;(2)求证:数列为等差数列;(3)若,求的前 项和.
一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知中,三条边所对的角分别为、、,且.(1)求角的大小;(2)若,求的最大值.
已知函数.(1)若曲线在和处的切线相互平行,求的值;(2)试讨论的单调性;(3)设,对任意的,均存在,使得.试求实数的取值范围.