如图,AB∥CD,∠1=∠2,∠BEF与∠EFC相等吗?为什么?
某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.
(1)求A品牌产销线2018年的销售量;
(2)求B品牌产销线2016年平均每份获利增长的百分数.
如图,CD是⊙O的弦,AB是直径,且 CD ∥ AB ,连接AC、AD、OD,其中 AC = CD ,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分的周长之和(参考数据: π = 3 . 1 , 2 = 1 . 4 , 3 = 1 . 7 ).
某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.
(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)
(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
如图,直线 y = 3 x + 3 与两坐标轴分别交于A、B两点.
(1)求∠ABO的度数;
(2)过A的直线l交x轴正半轴于C, AB = AC ,求直线l的函数解析式.
杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:
如图, AB ∥ OH ∥ CD ,相邻两平行线间的距离相等,AC,BD相交于O, OD ⊥ CD .垂足为D,已知 AB = 20 米,请根据上述信息求标语CD的长度.