(本小题满分14分)已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,一个焦点为,点在椭圆上.(1)求动圆圆心的轨迹的方程及椭圆的方程;(2)若动直线与轨迹在处的切线平行,且直线与椭圆交于两点,试求当面积取到最大值时直线的方程.
(本小题满分14分)在四棱锥中,平面,是边长为4的正三角形,与的交点恰好是中点,又,点在线段上,且. (1)求证:; (2)求证:平面.
(本小题满分14分)如图,在平面上,点,点在单位圆上,() (1)若点,求的值; (2)若,,求.
(本小题满分10分)设且,集合的所有个元素的子集记为. (1)求集合中所有元素之和; (2)记为中最小元素与最大元素之和,求的值.
(选修4-5:不等式选讲) 设正数满足,求的最小值.
(选修4-4:坐标系与参数方程) 在极坐标系中,圆是以点为圆心,为半径的圆. (1)求圆的极坐标方程; (2)求圆被直线所截得的弦长.