(本小题满分13分)某市“环保提案”对某处的环境状况进行了实地调研,据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为.现已知相距的,两家化工厂(污染源)的污染强度分别为正数,,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设.(1) 试将表示为的函数; (2) 若时,在处取得最小值,试求的值.
选修4—4:坐标系与参数方程 已知曲线C1的极坐标方程为,曲线C2的极坐标方程为(,曲线C1,C2相交于点A,B。 (1)将曲线C1,C2的极坐标方程化为直角坐标方程; (2)求弦AB的长。
选修4-1:几何证明选讲 如图,圆O的直径AB=10,弦DE⊥AB于点H,AH=2。 (1)求DE的长; (2)延长ED到P,过P作圆O的切线,切点为C,若PC=2,求PD的长。
(本小题满分12分) 已知函数 (1)当时,求曲线在点处的切线方程; (2)当时,讨论的单调性
(本小题满分12分) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。 (1)求的值及的表达式。 (2)隔热层修建多厚时,总费用达到最小,并求最小值。
(本小题满分12分) 在△ABC中,内角A、B、C对边长分别是a,b,c,已知c=2,C=(1)若△ABC的面积等于;(2)若的面积。