(本小题满分12分)已知函数的最小正周期为,当时,函数的最小值为0。(1)求函数的表达式;(2)在△,若的值。
(本题14分)为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行一定数量的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中27名境外游客,其余是境内游客.在境外游客中有持金卡,在境内游客中有持银卡..(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡,至多1人持银卡的概率;(Ⅱ)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望.
(本题14分)A、B是直线图像的两个相邻交点,且(I)求的值;(II)在锐角中,a,b,c分别是角A,B,C的对边,若 的面积为,求a的值.
(本小题满分10分)选修4-5:不等式选讲关于的不等式(Ⅰ)当时,解不等式;(Ⅱ)设函数,当为何值时,恒成立?
(本小题满分10分)选修4-4:坐标系与参数方程已知在平面直角坐标系内,点 在曲线C:为参数,)上运动.以为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)写出曲线C的标准方程和直线的直角坐标方程;(Ⅱ)若直线与曲线C相交于A、B两点,点M在曲线C上移动,试求面积的最大值.
(本小题满分10分)选修4-1:几何证明选讲如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.(1)求证:;(2)若,试求的大小.