(本小题满分12分)已知函数的最小正周期为,当时,函数的最小值为0。(1)求函数的表达式;(2)在△,若的值。
(本小题满分13分)一个袋中装有个形状大小完全相同的小球,球的编号分别为.(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率;(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.
(本小题满分13分)如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点.(Ⅰ)求证:⊥平面;(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.
(本小题满分13分)已知函数.(Ⅰ)若点在角的终边上,求的值; (Ⅱ)若,求的值域.
已知函数(,,为常数,).(Ⅰ)若时,数列满足条件:点在函数的图象上,求的前项和;(Ⅱ)在(Ⅰ)的条件下,若,,(),证明:;(Ⅲ)若时,是奇函数,,数列满足,,求证:.
设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且,若过,,三点的圆恰好与直线:相切. 过定点的直线与椭圆交于,两点(点在点,之间).(Ⅰ)求椭圆的方程;(Ⅱ)设直线的斜率,在轴上是否存在点,使得以,为邻边的平行四边形是菱形. 如果存在,求出的取值范围,如果不存在,请说明理由;(Ⅲ)若实数满足,求的取值范围.