(本题满分13分) 如图,是离心率为的椭圆,:()的左、右焦点,直线:将线段分成两段,其长度之比为1 : 3.设是上的两个动点,线段的中点在直线上,线段的中垂线与交于两点.(Ⅰ) 求椭圆C的方程;(Ⅱ) 是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.
已知函数 (1)若在上是增函数,求实数的取值范围; (2)若是的极值点,求在上的最小值和最大值.
如图,三棱柱的所有棱长都为2,为中点,平面 (1)求证:平面; (2)求二面角的余弦值; (3)求点到平面的距离.
求由抛物线与它在点和点的切线所围成的区域的面积。
在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?
已知函数 ⑴若为的极值点,求的值; ⑵若的图象在点处的切线方程为,求在区间上的最大值; ⑶当时,若在区间上不单调,求的取值范围.