(本小题满分12分)已知函数和点,过点作曲线的两条切线、,切点分别为、.(1)求证:为关于的方程的两根;(2)设,求函数的表达式;(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等式成立,求的最大值.
(本小题满分12分)在如图所示的空间几何体中,平面平面ABC,是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上.(1)求证:DE//平面ABC;(2)求二面角的余弦值.
(本小题满分12分)已知函数的最大值为2,且最小正周期为.(1)求函数的解析式及其对称轴方程;(2)若的值.
(本小题满分14分)设函数,(1)证明:是上的增函数;(2)设,当时,恒成立,求的取值范围.
(本小题满分12分)已知椭圆:上任意一点到两焦点距离之和为,离心率为,动点在直线上,过作直线的垂线,设交椭圆于点.(1)求椭圆的标准方程;(2)证明:直线与直线的斜率之积是定值;
(本小题满分12分)在长方体中,底面是正方形,是中点,点是棱上任意一点.(1)证明:;(2)若求的长