(本小题满分12分)已知函数和点,过点作曲线的两条切线、,切点分别为、.(1)求证:为关于的方程的两根;(2)设,求函数的表达式;(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等式成立,求的最大值.
已知椭圆的两个焦点分别为和,离心率. (1)求椭圆的方程; (2)若直线()与椭圆交于不同的两点、,且线段 的垂直平分线过定点,求实数的取值范围.
已知数列是公差为的等差数列,且. (1)求数列的通项公式; (2)设数列的前项和为. 证明:.
如图:已知长方体的底面是边长为的正方形,高,为的中点,与交于点. (1)求证:平面; (2)求证:∥平面; (3)求三棱锥的体积.
甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下: 甲 86 77 92 72 78 乙 78 82 88 82 95 (1)用茎叶图表示这两组数据;. (2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算); (3)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.
已知函数的图象过点. (1)求实数的值; (2)求函数的最小正周期及最大值.