(本小题满分12分)已知函数和点,过点作曲线的两条切线、,切点分别为、.(1)求证:为关于的方程的两根;(2)设,求函数的表达式;(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等式成立,求的最大值.
已知向量与互相垂直,其中. (Ⅰ)求和的值; (Ⅱ)若,,求的值.
设 (Ⅰ)若,求实数的值; (Ⅱ)求在方向上的正射影的数量.
已知函数f (x) = (1)试判断当的大小关系; (2)试判断曲线和是否存在公切线,若存在,求出公切线方程,若不存在,说明理由; (3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.
设是各项都为正数的等比数列, 是等差数列,且, (1)求,的通项公式; (2)记的前项和为,求证:; (3)若均为正整数,且记所有可能乘积的和,求证:.
曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧). (1)当=,时,求椭圆的方程; (2)若,求的值.