(本大题10分)求圆心在上,与轴相切,且被直线截得弦长为的圆的方程.
已知的图象经过点,且在处的切线方程 (1)求的解析式; (2)求在区间上的最大值及取得最大最值时x的值.
已知等差数列的公差,其前n项和为,,; (1)求出数列的通项公式及前n项和公式 (2)若数列满足,求数列的通项公式
已知分别为△ABC三个内角A,B,C的对边, (1)求A (2)若,△ABC的面积为,求b,c
已知:命题p:曲线与轴相交于不同的两点; 命题表示焦点在轴上的椭圆. 若“p且q” 是假命题,“”是假命题,求取值范围.
如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点. (Ⅰ)求点M的轨迹方程; (Ⅱ)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程; (Ⅲ)过的直线与轨迹E交于P、Q两点,求面积的最大值.