如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且.(1)求证:平面⊥平面;(2)求平面和平面所成锐二面角的余弦值.
(本小题满分12分) 如图所示, 四棱锥P-ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD=,E为PD上一点,PE = 2ED. (Ⅰ)求证:PA^平面ABCD; (Ⅱ)求二面角D-AC-E的余弦值; (Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.
(本小题满分12分) 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球 (Ⅰ)求取出的3个球中至少有一个红球的概率; (Ⅱ)求取出的3个球得分之和恰为1分的概率; (Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.
(本小题满分12分) 设ABC的内角A、B、C的对边分别为a、b、c,cos(A—C)+cos B=,b2=ac,求B.
(本小题满分14分) 已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点(-1,),过点P(2,1)的直线l与椭圆C在第一象限相切于点M. (1)求椭圆C的方程; (2)求直线l的方程以及点M的坐标; (3)是否存在过点P的直线l与椭圆C相交于不同的两点A,B,满足·=?若存在,求出直线l的方程;若不存在,请说明理由.
(本小题满分14分) 已知函数f (x)=(2-a)(x-1)-2lnx,(a∈R,e为自然对数的底数) (1)当a=1时,求f (x)的单调区间; (2)若函数f (x)在(0,)上无零点,求a的最小值