如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心, PC为半径的⊙P与x轴的正半轴交于A、B两点,函数y=ax²+bx+4过A,B,C三点且AB=6. ⑴求⊙P的半径R的长; ⑵若点E在y轴上,且△ACE是等腰三角形,试写出所有点E的坐标;
某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题: (1)补全图1中的条形统计图; (2)现有喜欢“新闻节目”记为A,“体育节目”记为B,“综艺节目”记为C,“科普节目”记为D的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.
如图,Rt△中,,,,是斜边上的高,点为边上一点(点不与点、重合),连接 ,作⊥,与边、线段分别交于点,; (1)求线段、的长; (2)设,,求关于的函数解析式,并写出x的取值范围.
如图,,C、D是的三等分点,AB分别交OC、OD于点E、F,求证:AE=CD.
化简.
如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点。 (1)求点A、B、C的坐标; (2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积; (3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方)。若,求点F的坐标。