如图,直二面角中,四边形是边长为2的正方形,,为上的点,且平面.(1)求证:平面;(2)求二面角的大小;(3)求点到平面的距离.
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=. (1)若M为PA中点,求证:AC∥平面MDE; (2)求直线PA与平面PBC所成角的正弦值; (3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?
设椭圆的焦点在轴上. (1)若椭圆的焦距为1,求椭圆的方程; (2)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.
已知函数. (1)求函数的最小正周期; (2)已知中,角所对的边长分别为,若,,求的面积.
解关于的不等式
已知等比数列的首项,公比满足且,又已知,,,成等差数列; 求数列的通项; 令,求的值;