(本小题满分10分)河上有一抛物线型拱桥,当水面距拱顶5时,水面宽为8,一小船宽4,高2,载货后船露出水面上的部分高,问水面上涨到与抛物线拱顶相距多少米时,小船恰好能通行。
已知△的三个内角、、所对的边分别为、、.,且.(1)求的大小;(2)若.求.
已知数列满足,,. (1)求数列的通项公式; (2)证明:对于一切正整数,有.
已知函数()是奇函数,有最大值 且. (1)求函数的解析式; (2)是否存在直线与的图象交于P、Q两点,并且使得、两点关于点对称,若存在,求出直线的方程,若不存在,说明理由.
在中,角所对的边分别为,向量 ,.已知 . (1)若,求角A的大小; (2)若,求的取值范围.
已知数列是首项的等比数列,其前项和中,,成 等差数列, (1)求数列的通项公式; (2)设,若,求证:.