已知二次函数满足,且该函数的图像与轴交于点,在轴上截得的线段长为。(1)确定该二次函数的解析式;(2)当时,求值域。
已知分别是的三个内角的对边,且满足. (Ⅰ)求角的大小; (Ⅱ)当为锐角时,求函数的值域.
(本小题满分12分) 如图,为椭圆上的一个动点,弦、分别过焦点、,当垂直于轴时,恰好有 (Ⅰ)求椭圆的离心率; (Ⅱ)设. ①当点恰为椭圆短轴的一个端点时,求的值; ②当点为该椭圆上的一个动点时,试判断是否为定值? 若是,请证明;若不是,请说明理由.
(本小题满分12分) 数列的前项和为,若,点在直线上. ⑴求证:数列是等差数列; ⑵若数列满足,求数列的前项和; ⑶设,求证:.
(本小题满分12分)如图,矩形所在平面与平面垂直,,且,为上的动点. (Ⅰ)当为的中点时,求证:; (Ⅱ)若,在线段上是否存在点E,使得二面角的大小为. 若存在,确定点E的位置,若不存在,说明理由.
(本小题满分12分)上海某玩具厂生产套世博吉祥物“海宝”所需成本费用为元,且,而每套“海宝”售出的价格为元,其中, (1)问:该玩具厂生产多少套“海宝”时,使得每套所需成本费用最少? (2)若生产出的“海宝”能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求的值.(利润 = 销售收入-成本)