为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.
如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F. (1)求证:PC是半⊙O的切线; (2)若∠CAB=30°,AB=10,求线段BF的长.
如图,已知△ABC中AB=AC. (1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,连接CF,求证:∠E=∠ACF.
(1)计算:-8sin45°- (2)先化简,然后x在﹣1、0、1、2四个数中任选一个合适的数代入求值.
如图,已知直线分别交x轴、y轴于A、B两点,抛物线经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CF.AD⊥CF成立. (1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由. (2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:AD⊥CF. (3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD=时,求线段CG的长.