某电视机厂计划在下一个生产周期内生产两种型号的电视机,每台A型、B型电视机所得的利润分别为6和4个单位,而生产一台A型、B型电视机所耗原料分别为2和3个单位;所需工时分别为4和2个单位。如果允许使用的原料为100个单位,工时为120个单位,且A、B型电视机的产量分别不低于5台和10台,那么生产两种类型电视机各多少台,才能使利润最大?
已知函数. (1)当时,判断在的单调性,并用定义证明. (2)若对任意,不等式 恒成立,求的取值范围; (3)讨论零点的个数.
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料: 该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验。 (1)求选取的2组数据恰好是相邻两个月的概率; (2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线 性回归方程; (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
已知圆的方程: (1)求m的取值范围; (2)若圆C与直线相交于,两点,且,求的值 (3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;
如图,在三棱柱中,侧棱底面, 为的中点,. (1)求证:平面; (2)若,求三棱锥的体积.
某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下: 甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法? (2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?