已知函数。(1)求的振幅和最小正周期;(2)求当时,函数的值域;(3)当时,求的单调递减区间。
(本小题满分12分)某公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本小题满分10分)(1)等差数列{}中,已知a1=,a2+a5=4,=33,试求n的值.(2)在等比数列{}中,a5=162,公比q=3,前n项和=242,求首项a1和项数n.
在平面直角坐标系中,已知以O为圆心的圆与直线恒有公共点,且要求使圆O的面积最小.(1)写出圆O的方程;(2)圆O与x轴相交于A、B两点,圆内动点P使、、成等比数列,求的范围;(3)已知定点Q(−4,3),直线与圆O交于M、N两点,试判断是否有最大值,若存在求出最大值,并求出此时直线的方程,若不存在,给出理由.
如图,在直四棱柱中,已知,.(1)求证:;(2)设是上一点,试确定的位置,使平面,并证明.
已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,+2ax+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.