计算:(m是正整数).
已知:是方程的两个实数根,且,抛物线的图像经过点A()、B().(1)求这个抛物线的解析式;(2) 设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积; (3) P是线段OC上的一点,过点P作PH⊥轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
如图,二次函数的图像过点,与轴交于点.(1)证明:(其中是原点);(2)在抛物线的对称轴上求一点,使的值最小;(3)若是线段上的一个动点(不与、重合),过作轴的平行线,分别交此二次函数图像及轴于、两点 . 请问是否存在这样的点,使. 若存在,请求出点的坐标;若不存在,说明理由.
已知矩形和点,当点在图中的位置时,求证:证明:过点作交、于、两点,∵ 又∵ ∴,∴请你参考上述信息,当点分别在图、图中的位置时,请你分别写出、、 之间的数量关系?,并选择其中一种情况给予证明
在中,,,将一块等腰直角三角板的直角顶点放在斜边的中点处,将三角板绕点旋转,三角板的两直角边分别交射线、于、两点. 如图①、②、③是旋转三角板得到的图形中的三种情况,试探究:(1)三角板绕点旋转,观察线段和之间有什么数量关系?并结合图②加以证明;(2)三角板绕点旋转,是否能成为等腰三角形?若能,写出所有 为等腰三角形时的长(直接写出答案即可);若不能,请说明理由;(3)如图,若将三角板的直角顶点放在斜边上的处,且,和前面一样操作,试问线段和之间有什么数量关系?并结合图④证明你的结论.
选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.