(11·湖州)(本小题10分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。⑴求证:四边形AECF是平行四边形;⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
已知排水管的截面为如图所示的圆O,半径为10,圆心O到水面的距离是6,求水面宽AB.
解方程:.
如图,在△ABC中,∠C=60°,AC=2, BC=3.求tanB的值.
已知,求代数式的值.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上两点,经过A、C、B的抛物线的一部分与经过点A、D、B的抛物线的一部分组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线:的顶点.(1)求A、B两点的坐标.(2)“蛋线”在第四象限上是否存在一点P,使得的面积最大?若存在,求出面积的最大值;若不存在,请说明理由;(3)当为直角三角形时,直接写出m的值.______