(11·湖州)(本小题?分) 如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点。P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D。 ⑴求点D的坐标(用含m的代数式表示); ⑵当△APD是等腰三角形时,求m的值; ⑶设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动。请直接写出点H所经过的路径长。(不必写解答过程)
(本题8分)已知抛物线的图象经过点(﹣1,0),点(3,0);(1)求抛物线函数解析式;(2)求函数的顶点坐标.
如图,在△ABC中,AB=AC=8cm,∠BAC=120°. (1)作△ABC的外接圆(只需作出图形,并保留作图痕迹); (2)求它的外接圆半径.
如图,在直角坐标平面内,直线y=-x+5与轴和轴分别交于A、B两点,二次函数y=+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且ABP的面积为10,求点P的坐标.
如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠PAB=40°,求∠P的度数.