(本小题12分) 将圆O: 上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线、抛物线的焦点是直线y=x-1与x轴的交点.(1)求,的标准方程;(2)请问是否存在直线满足条件:① 过的焦点;②与交于不同两点,,且满足?若存在,求出直线的方程; 若不存在,说明理由.
设数列的各项都是正数,, , .⑴求数列的通项公式;⑵求数列的通项公式;⑶求证: .
设函数,.⑴当时,求函数图象上的点到直线距离的最小值;⑵是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
数学试题中共有10道选择题每道选择题都有4个选项,其中有且仅有一个是正确的.评分标准规定:“每题只选1项,答对得5分,不答或答错得0分”,某考生每道题都给出了一个答案,已确定有6道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:(1)得50分的概率;(2)得多少分的可能性最大.
甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.(Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?
沿某大街在甲、乙、丙三个地方设有红、绿灯交通信号,汽车在甲、乙、丙三个地方通过(即通过绿灯)的概率分别为,,,对于该大街上行驶的汽车,求:(Ⅰ)在三个地方都不停车的概率;(Ⅱ)在三个地方都停车的概率;(Ⅲ)只在一个地方停车的概率.