在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。(I)证明:D1EA1D;(II)AE等于何值时,二面角D1-EC-D的大小为。
(本小题满分12分)在直角坐标系XOY中,以O为极点,X轴正半轴为极轴建立极坐标系。曲线C的极坐标方程是:,M,N分别是曲线C与X、Y轴的交点。(1)写出C的直角坐标系方程。并求M,N的极坐标。(2)设MN的中点为P,求直线OP的极坐标方程。
(本题满分10)如图所示,已知AB为⊙O的直径,AC为弦,,交AC于点D,BC=4cm,(1)求OD的长;(2)若,求⊙O的直径.
某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次。某学生在A处的命中率q1=0.25,在B处的命中率q2,该同学选择先在A处投一球,以后都在B处投,用X表示该同学投篮结束后所得的总分,其分布列如下:
(1)求q2的值;(2)求随机变量X的均值E(X);(3)试比较该同学选择都在B处投篮得分超过3分与上述方式投篮得分超过3分的概率的大小。
下表是某班英语和数学成绩的分布表,已知该班有50名学生,成绩分为1~5个档次。如:表中英语成绩是4分、数学成绩是2分的人数有5人。现设该班任意一位学生的英语成绩为m,数学成绩为n。
(1)求m=4,n=3的概率;(2)求在m≥3的条件下,n=3的概率;(3)求a+b的值,并求m的数学期望;(4)若m=2与n=4是相互独立的,求a,b的值。
盒中有5个红球,11个蓝球。红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球。现从中任取一球,假设每个球摸到的可能性都相同,若已知取到的球是玻璃球,求它是蓝球的概率。