将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗. 假定A,B两组同时开始植树.(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘用时小时,应如何分配A,B两组的人数,使植树活动持续的时间最短?(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨仍用时小时,而每名志愿者种植一捆沙棘实际用时小时,于是,从A组抽调6名志愿者加入B组继续种植,求植树活动持续的时间.
(本小题满分12分)已知直线过定点,且与抛物线交于、两点,抛物线在、两点处的切线的相交于点. (I)求点的轨迹方程; (II)求三角形面积的最小值.
(本小题满分12分)已知函数. (I)若函数在上是减函数,求实数的取值范围; (II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由? (III)当时,证明:.
(本小题满分12分)已知函数,,点是函数图象上任意一点,直线为函数的图象在处的切线. (I)求直线的方程; (II)若直线与的图象相切,求和的取值范围.
(本小题满分12分)已知椭圆的方程是,椭圆的左顶点为,离心率,倾斜角为的直线与椭圆交于、两点. (Ⅰ)求椭圆的方程; (Ⅱ)设向量(),若点在椭圆上,求的取值范围.
(本小题满分12分)已知两地的距离是120km.假设汽油的价格是6元/升,以km/h(其中)速度行驶时,汽车的耗油率为L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?