将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗. 假定A,B两组同时开始植树.(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘用时小时,应如何分配A,B两组的人数,使植树活动持续的时间最短?(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨仍用时小时,而每名志愿者种植一捆沙棘实际用时小时,于是,从A组抽调6名志愿者加入B组继续种植,求植树活动持续的时间.
(本小题满分12分)在△ABC中,角A,B,C所对的边依次为a,b,c,已知a=bcosC+csinB (1)求B; (2)若b=2,求△ABC面积的最大值.
(本小题满分12分)已知锐角△ABC中的三个内角分别为A,B,C. (1)设,求证△ABC是等腰三角形; (2)设向量s=(2sinC,-),t=(cos2C,2-1),且s∥t,若sinA=,求sin(-B)的值.
(本小题满分10分)某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机去三个不同的班级进行随班听课,要求每个班级至少有一位评估员. (1)求甲、乙同时去班听课的概率; (2)设随机变量为这五名评估员去班听课的人数,求的分布列和数学期望.
(本小题满分10分)在如图所示的多面体中,四边形为正方形,四边形是直角梯形,,平面,. (1)求证:平面; (2)求平面与平面所成的锐二面角的大小.
(不等式选讲)(本小题满分10分)已知a,b是正实数,求证:.