如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按的路径运动,且速度为每秒1㎝,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长。(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2. (1)求证:∠A=2∠DCB; (2)求图中阴影部分的面积(结果保留π和根号).
如图,点B在⊙O的直径AC的延长线上,点D在⊙O上,AD=DB,∠B=30°,若⊙O的半径为4. (1)求证:BD是⊙O的切线; (2)求CB的长.
已知关于的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长. (1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根.
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)和B(3,0)两点,交y轴于E. (1)求此抛物线的表达式. (2)若直线y=x+1与抛物线交于A,D两点,与y轴交于点F,连接DE,求△DEF的面积.
已知:,与成正比例,与x成反比例,且时,;时,.求时,y的值.