如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按的路径运动,且速度为每秒1㎝,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长。(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
(本题4分)把下列各数填入表示它所在的数集的大括号: -2.4,3,2.008,-,1,-,0,-(-2.28),π,-|-4| 正数集合:{…}; 负有理数集合:{…}; 整数集合:{…}; 负分数集合:{…}.
如图,在数轴上点A、B、C表示的数分别为-2,1,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC. (1)则AB=,BC=,AC=; (2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动。请问:BC-AB的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,请求其值; (3)由第(1)小题可以发现,AB+BC=AC.若点C以每秒3个单位长度的速度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动.请问:随着运动时间t的变化, AB、BC、AC之间是否存在类似于(1)的数量关系?请说明理由.
甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过2000元的电器,超出的金额按80℅收取;乙商场规定:凡超过1500元的电器,超出的金额按90℅收取.某顾客购买的电器价格是元. (1)当=1600时,该顾客应选择在商场购买比较合算; (2)当>2000时,分别用代数式表示在两家商场购买电器所需付的费用; (3)当=3000时,该顾客应选择哪一家商场购买比较合算?说明理由.
同样大小的黑色棋子按如图所示的规律摆放: (1)第5个图形有多少颗黑色棋子? (2)第2014个图形有多少颗棋子?请说明理由.
如果规定“Φ”为一种新的运算:Φ. 例如:Φ,请仿照例题计算: (1)Φ(2)ΦΦ