已知},,若,求实数的取值集合。
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1 (1)证明:MN∥平面PCD; (2)证明:MC⊥BD; (3)求二面角A—PB—D的余弦值。
已知函数. (1)求的最小正周期和图象的对称轴方程; (2)求在区间上的最大值和最小值。
设函数为实数,且, (Ⅰ)若,曲线通过点,且在点处的切线垂直于轴,求的表达式; (Ⅱ)在(Ⅰ)在条件下,当时,是单调函数,求实数的取值范围; (Ⅲ)设,,,且为偶函数,证明
已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是. (Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆的长轴上,点是椭圆上任意一点. 当最小时,点恰好落在椭圆的右顶点,求实数的取值范围.
设数列的前项和为,已知 (Ⅰ)求证:数列为等差数列,并写出关于的表达式; (Ⅱ)若数列前项和为,问满足的最小正整数是多少? .