已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点(4,-)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)
(本小题满分14分)已知各项均不相等的等差数列的前四项和为14,且恰为等比数列的前三项。(1)分别求数列的前n项和(2)设为数列的前n项和,若不等式对一切恒成立,求实数的最小值。
如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且平面ABD,AE=a。(1)若,求证:AB//平面CDE;(2)求实数a的值,使得二面角A—EC—D的大小为
已知函数的最小正周期为(1)求的单调递增区间;(2)在中,a、b、c分别是角A、B、C的对边,若的面积为,求a的值。
(本小题满分15分)已知抛物线上任一点到焦点的距离比到y轴距离大1。(1)求抛物线的方程;(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M(4,0),求的面积的最大值。
(本小题满分15分)已知函数(1)当a=1时,求函数在点(1,-2)处的切线方程;(2)若函数在上的图象与直线总有两个不同交点,求实数a的取值范围。