(本小题满分12分)曲线C:,过点的切线方程为,且交于曲线两点,求切线与C围成的图形的面积。
选修4—5:不等式选讲 若关于的不等式有解,求实数的取值范围。
(本小题满分10分)选修4-4:坐标系与参数方程. 已知曲线C:为参数,0≤<2π), (Ⅰ)将曲线化为普通方程; (Ⅱ)求出该曲线在以直角坐标系原点为极点,轴非负半轴为极轴的极坐标系下的极坐标方程.
选修4—1:几何证明选讲 如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连接AE交⊙O于点F,求证:。
已知函数(为自然对数的底数). (1)求的最小值; (2)不等式的解集为,若且求实数的取值范围; (3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
(1)求的标准方程; (2)设直线与椭圆交于不同两点且,请问是否存在这样的 直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.