如图,等腰梯形中,AB∥DC,AD=BC=5,DC=7,AB=13,动点P从点A出发,以每秒2个单位的速度沿AD→DC→CB→BA向终点A运动,同时点Q从点B出发,以每秒1个单位的速度沿BA向终点A运动,设运动时间为t秒。⑴求梯形的高为多少?⑵分段考虑,当t为何值时,四边形PQBC为平行四边形时?⑶在整个运动过程中,是否存在某一时刻,与重合?
如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)判断AP与⊙O的位置关系,并说明理由;(2)求PD的长.
如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100 米.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.(1)求气球的高度(结果精确到0.1米);(2)求气球飘移的平均速度(结果保留3个有效数字).
如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.
甲、乙、丙三位同学用质地大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.
本区某校对学生开展“不闯红灯,珍爱生命”的教育,为此校学生会委员在某天到市中心某十字路口,观察、统计上午7∶00~12∶00之间闯红灯的人次,制作了如下两个统计图:(1)图一中各时段闯红灯人次的平均数为 人次,中位数是 人次;(2)该路口这一天上午7∶00~12∶00闯红灯的未成年人有 人次;(3)估计一周(七天)内该路口上午7∶00~12∶00闯红灯的中青年约有 人次;(4)是否能以此估计全市这一天上午7∶00~12∶00所有路口闯红灯的人次?为什么?