如图,在梯形ABCD中,AD∥BC,AB=5,AD=6,DC=4,∠C=45º. 动点M从B点出发沿线段BC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿C→D→A运动,在CD上的速度为每秒个单位长度,在DA上的速度为每秒1个单位长度,当其中一个点到达终点是另一个点也随之停止运动.设运动的时间为t秒. (1)求BC的长. (2)当四边形ABMN是平行四边形时,求t的值. (3)试探究:t为何值时,△ABM为等腰三角形.
如图,抛物线过点 A ( 0 , 1 ) 和 C ,顶点为 D ,直线 AC 与抛物线的对称轴 BD 的交点为 B ( 3 , 0 ) ,平行于 y 轴的直线 EF 与抛物线交于点 E ,与直线 AC 交于点 F ,点 F 的横坐标为 4 3 3 ,四边形 BDEF 为平行四边形.
(1)求点 F 的坐标及抛物线的解析式;
(2)若点 P 为抛物线上的动点,且在直线 AC 上方,当 ΔPAB 面积最大时,求点 P 的坐标及 ΔPAB 面积的最大值;
(3)在抛物线的对称轴上取一点 Q ,同时在抛物线上取一点 R ,使以 AC 为一边且以 A , C , Q , R 为顶点的四边形为平行四边形,求点 Q 和点 R 的坐标.
如图,在平面直角坐标系 xOy 中,一次函数的图象与反比例函数 y = k x ( k < 0 ) 的图象在第二象限交于 A ( - 3 , m ) , B ( n , 2 ) 两点.
(1)当 m = 1 时,求一次函数的解析式;
(2)若点 E 在 x 轴上,满足 ∠ AEB = 90 ° ,且 AE = 2 - m ,求反比例函数的解析式.
如图, ΔABC 内接于 ⊙ O ,点 D 在 ⊙ O 外, ∠ ADC = 90 ° , BD 交 ⊙ O 于点 E ,交 AC 于点 F , ∠ EAC = ∠ DCE , ∠ CEB = ∠ DCA , CD = 6 , AD = 8 .
(1)求证: AB / / CD ;
(2)求证: CD 是 ⊙ O 的切线;
(3)求 tan ∠ ACB 的值.
为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有 A 、 B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:
A 加工厂
74
75
73
77
78
72
76
B 加工厂
(1)根据表中数据,求 A 加工厂的10个鸡腿质量的中位数、众数、平均数;
(2)估计 B 加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?
(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?
4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.
甲书店:所有书籍按标价8折出售;
乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.
(1)以 x (单位:元)表示标价总额, y (单位:元)表示应支付金额,分别就两家书店的优惠方式,求 y 关于 x 的函数解析式;
(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?